Ohio Precast Concrete Association

LEHIGH

Materials (SCMs)

Supplementary Cementitious

March 2017 Meeting Jay Whitt Lehigh Cement Technical Services Engineer

Class F

Fly Ash

Silica

Fume

Metakaolin

Fly Ash Benefits in Concrete
 Improves concrete workability and lowers water demand. Spherical particles decrease water required & increase pumpability.
 Less bleeding and segregation than plain concretes.
 Sulfate and Alkali Aggregate Resistance. Class F and a few Class C Fly Ashes impart significant sulfate resistance and alkali aggregate reaction (ASR) resistance to the concrete mixture.
 Fly Ash has a lower heat of hydration. The use of fly ash may greatly reduce this heat build up and reduce external cracking.
 Fly ash can be economical.
Consider longer set times and lesser initial strength gains

- · Less expansion of the concrete due to alkali-silica reactivity
 - Electrical resistivity 20-100 greater than ordinary concrete
- Increased abrasion resistance

.

- Superior resistance to chemical attack from chlorides, acids, nitrates and sulfates
- · Most often used in high-performance concrete.

<u>Consider</u> increase water demand and /or admixtures needed, also stickiness or surface finishing challenges, and increase mixing

Overview of Slag Cement

- Defined by ACI Committee 116: As "granulated blast-furnace slag that has been finely ground and is a hydraulic cement."
- Slag Cement is a nonmetallic product, consisting essentially of silicates and aluminosilicates of calcium and of other bases, that is developed in a molten condition simultaneously with iron in a blast furnace

Typically dosages range from 15 to 40% by mass of cementitious material with ranges higher based on project specific.

What is Slag Cement?

- Slag Cement has similar chemistry to portland cement in that both contain almost the same chemical elements, although in differing percentages
- Non-metallic product of an iron blast furnace
- Granulated then grounded
- · Cementitious material
- ASTM C989: Grade 80,100, & 120

LEHIGH

Benefits of Slag Cement to concrete

Slag cement improves the performance of concrete and provides for a more environmentally sustainable concrete mixture.

- · Improved workability
- Easier placeability and finishability
- Higher long-term compressive and
- flexural strengths
- Reduced permeability Improved durability
- higher resistance to ASR and Sulfate More consistent performance
- Lighter color

Consider longer set times and lesser initial strength gains

As "a calcined clay which is produced by low-temperature calcination of kaolin clay. Consisting of predominately silica and alumina." ASTM C618

- Metakaolin is a calcined between 600° and 850°C from kaolin stone that is transformed to an amorphous phase called metakaolin. Reacts with the CaOH of the cement /or lime reactions. (ref
- First used for the construction of large dams in Brazil in the 1960s, to suppressing any damage due to alkali-silica reaction.
- Typically dosages range from 5 to 20% by mass of cementitious material.

Benefits of Metakaolin

- Increase strength: compression & flexural
- Reduce permeability
- Improve finishability
- Reduce efflorescence
- Lower cement content (lower shrinkage)
- · Eliminate bleed water capillary channels
- Increased chemical resistance & durability
- Reduce ASR (Alkali Silica Reaction) By replacing 8%-20% of the cement in a mix design

<u>Consider</u>: increase water demand & proper curing required to get full benefit. Slight increase in heat of hydration.

Blended Cements & Ternary Mixes

- Ternary concrete
 mixtures include three
 different cementitious
 materials.
- The most common ternary mixes are portland, slag cement and fly ash, and portland, slag cement and silica fume.

LEHIGH

